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PART 1

1 Applications of dynamical systems in Cosmology
(a) Scalar field cosmology

2 Static LRS class II spacetimes sourced by a scalar field
(a) Massless scalar field
(b) Exponential Potential
(c) Arbitrary Potential
(d) Martinez-Troncoso-Zanelli (MTZ) black hole
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Dynamical systems in cosmology

In dynamical systems, phase space is a space in which all possible states of a system
are represented. In phase space, every degree of freedom or parameter of the system
is represented as an axis of a multidimensional space; a one-dimensional system is
called a phase line, while a two-dimensional system is called a phase plane.

Let M be the class of all cosmological models whose state at time t can be
represented as an element x in an state space Σ.

The evolution of an element of the class Σ is determined by the solution of a
system of equations differential with constraints

∂tx = X(x, ∂ix, . . .), C(x, ∂ix, . . .) = 0 (1)

where ∂i denotes partial derivative with relation to xi, and . . . denotes possible
higher-order derivatives.

For homogeneous cosmologies, (1) reduces to

dy
dτ

= f (y), y ∈ Rn, g(y) = 0, (2)
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Procedure

1 Determine when the state space defined by (2), it is compact.
2 Identify lower dimensional invariant sets, which contain orbits of model classes

with additional symmetries.
3 Find all singular points and analyse their local stability. Find its stable and

unstable manifolds, which can coincide with some of the invariant sets found in
point (2).

4 Find Dulac functions or monotonic functions defined in as many invariant sets as
possible.

5 Investigate bifurcation of parameters. The bifurcations may be associated with
changes in the local stability of the singular points.

6 With all the information contained in (1) - (5) you can make precise guesses about
the asymptotic evolution. The monotonic functions in point (4), combined with
theorems of the theory of dynamical systems, can allow to prove those
conjectures.

7 Knowing the stable and unstable manifolds of singular points, it is possible to
construct all possible heteroclinic sequences that join the attractor of the past
with the attractor of the future, allowing to obtain information about the
intermediate behaviour’s of the models.
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Dynamical systems in cosmology “Program”

1 Use dynamical systems theory to determine the asymptotic states of
cosmological models, particularly when the governing equations are a finite
system of autonomous ordinary differential equations.

2 Discuss cosmological models as dynamic systems, with special emphasis on
applications in the early Universe.

3 Review the asymptotic properties of spatially homogeneous and inhomogeneous
models in general relativity.

4 Discuss the results related to scalar field models with an exponential potential
(with and without barotropic matter).

5 Discuss the dynamic properties of cosmological models derived from effective
actions.

6 Use computational tools to solve problems.
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Some gravity models

1 Within general relativity (GR):

Model Lagrangian Density Eqs. of Motion

Quintessence Lϕ = −V(ϕ) + X ϕ̈ + 3Hϕ̇ + dV
dϕ = 0

Tachyon Lϕ = −V(ϕ)
√

1 − 2 X ϕ̈
1−ϕ̇2 + 3Hϕ̇ + 1

V
dV
dϕ = 0

Phantom Lϕ = −V(ϕ)− X ϕ̈ + 3Hϕ̇ − dV
dϕ = 0

K-essence Lϕ = L(ϕ, X)

L non-linear in X
(

∂L
∂X + 2X ∂2L

∂X2

)
ϕ̈ + ∂L

∂X (3Hϕ̇) +

∂2L
∂ϕ∂X ϕ̇2 − ∂L

∂ϕ = 0

where X ≡ − 1
2 gα β∂αϕ∂βϕ

2 Modified gravity (GM): scalar-tensor and f (R, RabRab, . . .) . . . theories.
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Scalar field cosmology

Consider now as a candidate for dark energy a quintessence scalar field with action

Sϕ =
∫

dx4√−g
(
− 1

2 gµνϕ;µϕ;ν + V (ϕ)
)

and an ideal gas, The field equations
comprise the set of differential equations,

−3aȧ2 +
1
2

a3ϕ̇2 + a3V (ϕ) = a3ρm, (3)

ä +
1
2a

ȧ2 +
a
2

ϕ̇2 − aV (ϕ) = −wmaρm, (4)

where the scalar field, ϕ (t), satisfies the equation

ϕ̈ +
3
a

ȧϕ̇ + V (ϕ),ϕ = 0. (5)

We define H = ȧ
a which is the Hubble function, with value today H0 which is the

Hubble constant.
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Scalar field cosmology

With the use of the Hubble function, the field equations becomes

3H2 =
1
2

ϕ̇2 + V (ϕ) + ρm, (6)

−2Ḣ − 3H2 =
1
2

ϕ̇2 − V (ϕ) + (γ − 1)ρm, (7)

ϕ̈ + 3Hϕ̇ + V (ϕ),ϕ = 0. (8)

Question: Is there a way to understand the general evolution of the field equations?
Answer: Yes, we can study the stationary points and their stability.
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Dynamical systems formulation

For V(ϕ) =
ω2ϕ2

2 , we define

Ω =

√
ϕ̇2 + ω2ϕ2
√

6H
, Ωm =

ρm

3H2 , Ωk = − k
a2H2 , (9)

where
Ω2

+ Ωm + Ωk = 1. (10)

By using the new temporary variable τ = ln a, the guiding system is obtained:

∂τΩ =
1
2

Ω
(

3γΩm + 3Ω2
+ 2Ωk − 3

)
, (11a)

∂τΩm = Ωm

(
3γ(Ωm − 1) + 3Ω2

+ 2Ωk

)
, (11b)

∂τΩk = Ωk

(
3γΩm + 3Ω2

+ 2Ωk − 2
)

. (11c)
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Label (Ω, Ωm, Ωk) Eigenvalues Stability
P1 (0, 0, 0) {−2,− 3

2 ,−3γ} Sink for 0 < γ ≤ 2
Nonhyperbolic for γ = 0

P2 (1, 0, 0) {3, 1,−3(γ − 1)} Saddle for 1 < γ ≤ 2
Source for 0 ≤ γ < 1
Nonhyperbolic for γ = 1

P3 (0, 1, 0) { 3(γ−1)
2 , 3γ, 3γ − 2} Source for 1 < γ ≤ 2

Saddle for 0 < γ < 2/3, 2/3 < γ < 1
Nonhyperbolic for γ = 0, 2/3, 1

P4 (0, 0, 1) {2,− 1
2 , 2 − 3γ} Saddle for 0 ≤ γ < 2/3, 2/3 < γ ≤ 2

Nonhyperbolic for γ = 2/3

Table: Stability analysis for the equilibrium points of (11).
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Figure: Phase portrait of system (11) for γ = 0, 2/3, 1, 2.
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Results

1 Point P1 corresponds to a flat FLRW scalar field-dominated solution, that is, a
saddle point for 1 < γ ≤ 2 (i.e., if the perfect fluid EoS is in the matter domain),
or a source for 0 ≤ γ < 1 (i.e. if the perfect fluid has a negative pressure).

2 Point P2 corresponds to the flat FLRW matter-dominated solution, which is
unstable to matter perturbations. It is a source for 1 < γ ≤ 2 (i.e., if the perfect
fluid EoS is in the matter domain) or a saddle if 0 < γ < 2/3 or 2/3 < γ < 1. It
corresponds to a transient epoch in cosmological history.

3 Point P3 is a curvature-dominated solution with positive curvature (Misner
solution). The energy density of the scalar field scales as a−2 and is a saddle
(unstable to curvature perturbations).

4 Finally, point P4 corresponds to a vacuum Minkowski solution, a sink. The
Minkowski solution represents an empty universe. Physically, Minkowski
spacetime can be used as a local approximation of spacetime in reasonably small
regions and the presence of matter, as long as it does not self-gravitate.
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This example would be possible in the context of inflation from an isotropic initial
state, and we see that isotropisation is a transient state in the Universe before
reaching the Minkowski solution (that is, flat, isotropic, and empty of matter).

This approach, in which the scalar field oscillates in the minimum before
reaching a Minkowski solution, is useful for describing the oscillations of the
inflaton around the potential minimum during reheating after inflation.

This behaviour was described in models like the N-field inflation model as well as
in axion-like matter. Fig. 1 shows that the origin is a sink, as indicated in Table 1.
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Static LRS class II spacetimes sourced by a scalar field

We define [Clarkson & Barrett, Class. Quant. Grav. 20 (2003) 3855, Clarkson,
Phys. Rev. D 76 (2007) 104034]: a unit timelike vector ua (uaua = −1), the
projection tensor on the 3-space ha

b = ga
b + uaub and the derivatives:

Ṫa..b
c..d = ue∇eTa..b

c..d , DeTa..b
c..d = ha

f hp
c...hb

ghq
dhr

e∇rTf ..g
p..q ,

Further, we perform the split of the 3-space by introducing a spacelike vector na

naua = 0 , nana = 1.

with a projection tensor on the 2-space (sheet) orthogonal to na and ua

Na
b ≡ ha

b − nanb = ga
b + uaub − nanb , Na

a = 2 ,

Hence we can define two additional derivatives along na in the surface
orthogonal to ua, T̂a..b

c..d ≡ nf Df Ta..b
c..d , and a projected derivative onto the sheet

δeTa..b
c..d ≡ Na

f ...Nb
gNi

c..Nj
dNe

kDkTf ..g
i..j.
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Variables

The energy-momentum tensor Tab can be decomposed relative to ua

Tab = ρuaub + phab + qbua + qaub + πab (12)

ρ: energy density, p: isotropic pressure, qa = Qna: energy flux and
πab = Π(nanb − 1

2 Nab): trace-free anisotropic pressure

The electric part of the Weyl tensor: Eab = E(nanb − 1
2 Nab), vorticity free (LRS-II)

spacetimes implies magnetic Weyl curvature Hab = 0.

expansion: Θ = ∇aua, shear: Σ = nanb∇aub, sheet expansion: ϕ = δana and the
acceleration: A = nau̇a.
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Canonical scalar field in static LRS class II spacetimes

T(ψ)
ab := ∇aψ∇bψ − 1

2
gab

[
(∇ψ)2 + 2V(ψ)

]
, (13)

we have

ρ =
1
2

ψ̂2 + V(ψ),

p = −1
6

ψ̂2 − V(ψ),

Π =
2
3

ψ̂2.
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Static LRS class II spacetimes sourced by a scalar field

ψ̂ = Ψ, (15a)

ϕ̂ = −1
2

ϕ2 − 2
3

(
Ψ2 + V(ψ)

)
− E , (15b)

Ê =
1
3

Ψ2
(
A− 1

2
ϕ

)
− 3

2
ϕE , (15c)

Â = − (A+ ϕ)A− V(ψ) (15d)

Ψ̂ = − (A+ ϕ)Ψ + V′(ψ), (15e)

K̂ = −ϕK , (15f)

subject to the constraints

E = −Aϕ − 2V(ψ)

3
+

Ψ2

3
, (16a)

K = Aϕ + V(ψ)− Ψ2

2
+

ϕ2

4
. (16b)

where the Gaussian curvature via the Ricci tensor on the sheet is 2Rab = KNab
[Betschart & Clarkson, Class. Quant. Grav. 21 (2004) 5587].
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The dynamical system

We will use the eq. ( 16b) to define the dimensionless variables.

x1 = −E
K

, x2 =
ϕ

2
√

K
, x3 =

A√
K

,

y1 =
Ψ√
2K

, y2 =
V(ψ)

3K
,

λ = −
V,ψ

V
, Γ =

VV,ψψ

V2
,ψ

, (17a)

Therefore the constraints equations ( 16a, 16b) become

x2
2 + 2x2x3 − y2

1 + 3y2 = 1, (18a)

3x1 − 6x2x3 + 2y2
1 − 6y2 = 0. (18b)
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Dynamical system

Reduced dynamical system

x′2 = x2x3 − y2
1, (19a)

x′3 = x2
2 + x2x3 − x2

3 − y2
1 − 1, (19b)

y′1 =
λ
(
x2

2 + 2x2x3 − y2
1 − 1

)
√

2
− y1(x2 + x3), (19c)

λ′ = −
√

2(Γ − 1)λ2y1. (19d)

where we have introduced the normalized spatial derivative f ′ = f̂√
K

. Notice that for

positive potential (y2 > 0), we have from eq.( 18a) the condition x2(x2 + 2x3)− y2
1 ≤ 1.

Therefore for non-negative potentials, the above system defines a flow on the
unbounded phase space{

(x2, x3, y1, λ) : x2(x2 + 2x3)− y2
1 ≤ 1, λ ∈ R

}
. (20)
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Massless scalar field

We introduce Poincaré variables to study the behaviour of this system at infinity in
the phase space:

X2 =
x2√

1 + x2
2 + x2

3

, X3 =
x3√

1 + x2
2 + x2

3

. (21a)

The infinity boundary x2
2 + x2

3 → +∞ corresponds to the unitary circle X2
2 + X2

3 = 1.
The evolution equations are

X̃2 = [1 − X2 (2X2 + X3)]
[
1 − X2

2 − X2
3

]
, X̃3 = −X3 [2X2 + X3]

[
1 − X2

2 − X2
3

]
, (22)

defined on the phase space{
(X2, X3) : 2X2

2 + 2X2X3 + X2
3 ≥ 1, X2

2 + X2
3 ≤ 1

}
, (23)

where we have rescaled the radial variable through f̃ →
√

1 − X2
2 − X2

3f ′.
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Fixed points

In the table 2, are presented the critical points at infinity (recall that the circle is a set
of critical points) for the Poincaré (global) system (22).

Point X2 X3 Stability Nature

PH 0 1 repeller Horizon
P̄H 0 −1 attractor Horizon
PS

2√
5

− 1√
5

repeller Singularity

P̄S − 2√
5

1√
5

attractor Singularity

Table: Critical points at infinity for the Poincaré (global) system (22).
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Reconstruction of the metric

We can easily reconstruct the metric using the variables x2 and x3. In fact, we have
from [A. Ganguly, R. Gannouji, R. Goswami & S. Ray, Class. Quant. Grav. 32 (2015)
no.10, 105006], B = x2

2 and d ln A/d ln r = 2x3/x2 where (A, B) are the gravitational
potentials defined as

ds2 = −A(r)dt2 +
dr2

B(r)
+ r2

(
dθ2 + sin2 θdϕ2

)
(24)

Using the 1 + 1 + 2 decomposition for LRS-II spacetimes, it can be shown that the
Misner-Sharp mass takes the following form [G. F. R. Ellis, R. Goswami, A. I. M.
Hamid & S. D. Maharaj, Phys. Rev. D 90 (2014) no.8, 084013]

M =
1

2K3/2

( ρ

3
− E − Π

2

)
=

1 − x2
2

2
√

K
=

1 − 2X2
2 − X2

3

2
√

K(1 − X2
2 − X2

3)
. (25)
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Massless scalar field

X2

X
3

PS

PS

PH

PH

PMPM

��

�
�

��

��

��

��

��

��

Fig. 1 (a) Global phase space for the system
(22). The blue region is forbidden since it
leads to the violation of the reality condition
y2

1 ≥ 0.

Fig. 1 (b) Global phase space for a massless
ghost scalar field. The blue region represents
the forbidden part of the phase space. A neg-
ative Misner-Sharp mass defines the pink re-
gion.
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Results for the massless scalar field

1 The critical points (PH, P̄H) correspond to horizons because there coordinate is
X2 = 0 as shown in [A. Ganguly, R. Gannouji, R. Goswami & S. Ray, Class.
Quant. Grav. 32 (2015) no.10, 105006].

2 The points (PS, P̄S) correspond to a singularity, in fact, we have from the
coordinates d ln A/d ln r = 2x3/x2 = 2X3/X2 = −1 which implies A ∝ 1/r. The
same behaviour appears for B. Obviously, at the critical point B = x2

2 = ∞ but
after linearization of the system as performed in [A. Ganguly, R. Gannouji, R.
Goswami & S. Ray, Class. Quant. Grav. 32 (2015) no.10, 105006] it appears that B
diverges as 1/r.

3 We have only one trajectory and, therefore, one solution connecting the Horizon
(PH) to Minkowski asymptotically (PM).
That is the Schwarzschild solution as shown in [A. Ganguly, R. Gannouji, R.
Goswami & S. Ray, Class. Quant. Grav. 32 (2015) no.10, 105006]. Any other
trajectory starts from a singularity and not from the Horizon and therefore
describes a naked singularity.
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Exponential Potential V = V0e−λψ

The evolution equations can be written in compact variables as

X̃2 = − λ√
2

X2Y1
[
2X2

2 + 2X2X3 + X2
3 − 1

]
+ Y2

1 [X2(2X2 + X3)− 1]

−X2X3 [X2(3X2 + X3)− 2] , (26a)

X̃3 = − λ√
2

X3Y1
[
2X2

2 + 2X2X3 + X2
3 − 1

]
− 3X2

2X2
3 + 2X2

2 − X2X3
3

+X3Y2
1(2X2 + X3) + X2X3 + X2

3 − 1, (26b)

Ỹ1 = λ√
2

[
1 − Y2

1
] [

2X2
2 + 2X2X3 + X2

3 − 1
]
− X2Y1

[
3X2X3 + X2

3 + 1
]

+Y3
1 [2X2 + X3] . (26c)

defined on the phase space{
(X2, X3, Y1) : 2X2

2 + 2X2X3 + X2
3 ≤ 1, X2

2 + X2
3 + Y2

1 ≤ 1
}

, (27)

where we have rescaled the radial variable through X̃ →
√

1 − X2
2 − X2

3 − Y2
1 X′.
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Exponential Potential V = V0e−λψ

P

PS

PH

PM

PS

PH

M

M

Pλ

Pλ

PM

PS

PH

PM

PS

PH

M

M

X2

X3

Y1

Figure: Phase space of the exponential potential where the blue part represents the forbidden
region (phantom scalar field). M and M̄ are the phase space boundaries representing two
invariant sub-manifolds where most critical points are localised. On the left figure, the phase
space is represented with some orbits for λ = 1 for which all critical points are localised on M
and M̄, while the right figure represents the orbits for λ = −4 and therefore Pλ and P̄λ exist.
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Discussion about the Exponential Potential

For the exponential potential, we can analyse two cases:

The trajectory is over the critical surface (M or M̄). This case reduces to a 2D
system studied below.

The trajectory flows from one surface to the other (M to M̄).

For the first case, and having in mind that M̄ is just the inverse of M, we need to
study only the sub-system projected onto the surface M, with parametrization

X2 = cos θ and X3 = sin θ − cos θ, θ ∈
[
cos−1

(
2√
5

)
, π

2

]
.

The system of the equation on the surface M then becomes

θ̃ = −
(

cos θ−sin θ
2

) [
1 + 2Y2

1 + cos(2θ)− 2 sin(2θ)
]

(28)

Ỹ1 = Y1

(
cos θ+sin θ

2

) [
1 + 2Y2

1 + cos(2θ)− 2 sin(2θ)
]

, (29)

whose orbits are trivially given by

Y1(θ) = c1 [cos(θ)− sin(θ)] . (30)
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Dynamics on the invariant surface M, for the case of exponential
potential

θ

�
�

�� ��

��

Figure: Phase space of of the system ( 28)-( 29) representing the dynamics on the invariant
surface M, for the case of exponential potential.
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Results for the Exponential Potential

1 We deduce that we have the same conclusions previously encountered in the
massless case.

2 The solution connecting the Horizon (PH) to an asymptotic flat region (PM) is
unique, and it is the Schwarzschild solution (green curve in Fig. 3). All other
solutions exhibit naked singularities.

3 That is consistent with the no-go theorem, which states that for any convex
potential (V,ψψ > 0), the Schwarzschild spacetime is the unique static black hole
solution which is asymptotically flat.
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Quintessence field with an Arbitrary Potential

After a Poincarè compactification, we found the equations

X̃2 =− λ√
2

X2Y1

[
2X2

2 + 2X2X3 + X2
3 − 1

]
+ Y2

1 [X2(2X2 + X3)− 1]

− X2X3 [X2(3X2 + X3)− 2] , (31a)

X̃3 =− λ√
2

X3Y1

[
2X2

2 + 2X2X3 + X2
3 − 1

]
− 3X2

2X2
3 + 2X2

2 − X2X3
3

+ X3Y2
1(2X2 + X3) + X2X3 + X2

3 − 1, (31b)

Ỹ1 =
λ√
2

[
1 − Y2

1

] [
2X2

2 + 2X2X3 + X2
3 − 1

]
− X2Y1

[
3X2X3 + X2

3 + 1
]
+ Y3

1[2X2 + X3], (31c)

λ̃ =−
√

2Y1f (λ) , (31d)

For V(ψ) > 0,
{
(X2, X3, Y1, λ) : 2X2

2 + 2X2X3 + X2
3 ≤ 1, X2

2 + X2
3 + Y2

1 ≤ 1, λ ∈ R
}

,
For V(ψ) < 0,

{
(X2, X3, Y1, λ) : 2X2

2 + 2X2X3 + X2
3 ≥ 1, X2

2 + X2
3 + Y2

1 ≤ 1, λ ∈ R
}

.
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Fixed point for an Arbitrary Potential

Point X2 X3 Y1 λ Existence Stability Nature
PH 0 1 0 λc λc ∈ R unstable Horizon
P̄H 0 −1 0 λc λc ∈ R stable Horizon
PS

2√
5

− 1√
5

0 λc λc ∈ R unstable Singularity

P̄S − 2√
5

1√
5

0 λc λc ∈ R stable Singularity

PM
1√
2

0 0 λc λc ∈ R saddle Minkowski

P̄M − 1√
2

0 0 λc λc ∈ R saddle Minkowski

PAdS
1√
2

1√
2

0 0 V(ψ) < 0 stable for f (0) > 0 Anti-de Sitter

P̄AdS − 1√
2

− 1√
2

0 0 V(ψ) < 0 unstable for f (0) > 0 Anti-de Sitter

P(λ⋆ )
√

2
(λ⋆ )2+4

√
2

(λ⋆ )2+4
λ⋆√

(λ⋆ )2+4
λ⋆ f (λ⋆ ) = 0, unstable for

A ∝ r2,

B ∝ r2−(λ⋆ )2(
λ⋆
)2 ≥ 6 f ′

(
λ⋆
)
< 0, λ⋆ >

√
6, singularity

or f ′
(
λ⋆
)
> 0, λ⋆ < −

√
6

saddle otherwise

P̄(λ⋆ ) −
√

2
(λ⋆ )2+4

−
√

2
(λ⋆ )2+4

− λ⋆√
(λ⋆ )2+4

λ⋆ f (λ⋆ ) = 0, stable for
A ∝ r2,

B ∝ r2−(λ⋆ )2(
λ⋆
)2 ≥ 6 f ′

(
λ⋆
)
< 0, λ⋆ >

√
6, singularity

or f ′
(
λ⋆
)
> 0, λ⋆ < −

√
6

saddle otherwise
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Lines of fixed points for an Arbitrary Potential

Point X2 X3 Y1 λ Existence Stability Nature

C(λ⋆ ) cos θ sin θ − cos θ
√

1 − X2
2 − X2

3 λ⋆ f (λ⋆ ) = 0 M is unstable for singularity

f ′
(
λ⋆
)
< 0,

λ⋆ <
2 cos(θ)+2 sin(θ)√

−1−cos(2θ)+2 sin(2θ)

cos θ sin θ − cos θ −
√

1 − X2
2 − X2

3 λ⋆ f (λ⋆ ) = 0 M is unstable for singularity

f ′
(
λ⋆
)
> 0,

λ⋆ > − 2 cos(θ)+2 sin(θ)√
−1−cos(2θ)+2 sin(2θ)

saddle otherwise

C̄(λ⋆ ) cos θ − sin θ − cos θ
√

1 − X2
2 − X2

3 λ⋆ f (λ⋆ ) = 0 M is stable for singularity

f ′
(
λ⋆
)
> 0,

λ⋆ >
2 cos(θ)−2 sin(θ)√

−1−cos(2θ)+2 sin(2θ)

cos θ − sin θ − cos θ −
√

1 − X2
2 − X2

3 λ⋆ f (λ⋆ ) = 0 M is stable for singularity

f ′
(
λ⋆
)
< 0,

λ⋆ < − 2 cos(θ)−2 sin(θ)√
−1−cos(2θ)+2 sin(2θ)

saddle otherwise
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Martinez-Troncoso-Zanelli (MTZ) black hole

Martinez-Troncoso-Zanelli (MTZ) black hole

The relations V(ψ) < 0 and f (0) > 0 are very useful to check if a model has solutions
which are asymptotically AdS (AAdS). For example, the Martinez-Troncoso-Zanelli
(MTZ) black hole is AAdS [C. Martinez, R. Troncoso and J. Zanelli, Phys. Rev. D 70
(2004) 084035 [hep-th/0406111]]. For this model, the potential is defined as

V(ψ) = Λ
[
1 + 2 sinh

( ψ√
6

)]
, Λ < 0 (32)

It is easy to check that for this potential f (λ) = 2/3 − λ2 and therefore f (0) > 0,
which implies that an AAdS solution exists, which is the MTZ black hole.
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Static LRS class II spacetimes sourced by a scalar field

We reformulated some of the important results about black holes in the presence
of a scalar field.

In the first case, where the potential is zero, we recovered all results for the black
hole and the conditions for the existence of a wormhole. We found that except
the Schwarzschild solution, all other solutions are naked singularities.

The same analysis has been extended to the exponential potential. We found that
black hole solution asymptotically flat is unique, and it is the Schwarzschild
solution; all other solutions are naked singularities. We also found other
solutions which connect the two regions of the phase space through x2 = 0 as a
wormhole but by violating the flare-out condition, implying a maximum radius
instead of a throat. Nevertheless, all these solutions are naked because they
connect two singularities.

Finally, a generic result has been derived. For any potential which is not
asymptotically zero, the unique black hole solution is Schwarzschild.
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PART 2

1 Periodic averaging
(a) The Van der Pol equation

2 LRS Bianchi III Einstein-Klein-Gordon system
(a) The system in the quasi-standard form
(b) Averaging conjecture

3 Generalized harmonic potentials
(a) Averaging generalized scalar-field cosmologies with matter
(b) Late-time behaviour
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Periodic averaging

The theory of averaging studies initial value problems of the general form

ẋ = f(x, t, ϵ), x(0) = a,

with x, f(x, t, ϵ) ∈ Rn, where ϵ plays the role of a, usually small, perturbation
parameter. One is typically looking at problems of the standard form

ẋ = ϵ f1(x, t) + ϵ2 f[2](x, t, ϵ), x(0) = a, (33)

with f1 and f[2] T-periodic in t. The exponents correspond to the respective
perturbation order, and the square bracket marks the remainder of the series; cf
[Sanders, Verhulst & Murdock, 2010, p 13, Notation 1.5.2].
To first order, the theory is then concerned with the Question to what degree
solutions of (33) can be approximated by the solutions of an associated averaged system

ż = ϵ f
1
(z), z(0) = a, f

1
(z) =

1
T

∫ T

0
f1(z, s)ds. (34)
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Take the following two definitions from [Sanders, Verhulst & Murdock, 2010, p 31]
and [Sanders, Verhulst & Murdock, 2010, Def 4.2.4] respectively.

Definition

D ⊂ Rn is a connected, bounded open set (with compact closure) containing the initial value
a, and constants L > 0, ϵ0 > 0, such that the solutions x(t, ϵ) and z(t, ϵ) with 0 ≤ ϵ ≤ ϵ0
remain in D for 0 ≤ t ≤ L/ϵ.

See also the comments on [Sanders, Verhulst & Murdock, 2010, p 31] how such a
triple (D, ϵ0, L) can be chosen.

Definition

Consider the vector field f(x, t) with f : Rn × R → Rn. Let f be Lipschitz continuous in x on
D ⊂ Rn, t ≥ 0. Let further f be continuous in t and x on R+ × D. If the average

f(x) = lim
T→∞

1
T

∫ T

0
f(x, s)ds

exists and the limit is uniform in x on compact subsets of D, then f is called a KBM-vector
field (Krylov, Bogoliubov and Mitropolsky).
(If the vector field f(x, t) contains parameters, we assume that the parameters and the initial
conditions are independent of ϵ and that the limit is uniform in the parameters.)
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The following theorem gives the basic result:

Lemma ([Sanders, Verhulst & Murdock, 2010, p 31, Thm 2.8.1])

Let f1 be Lipschitz continuous, let f[2] be continuous, and let ϵ0, D, L be as in
Definition 3.1. Then there exists a constant c > 0 such that

||x(t, ϵ)− z(t, ϵ)|| < cϵ

for 0 ≤ ϵ ≤ ϵ0 and 0 ≤ t ≤ L/ϵ, and where || . || denotes the norm ||u|| := ∑n
i=1 |ui| for

u ∈ Rn.

In other words, the error one makes by approximating the full system (33) by the
averaged system (34) will be of order ϵ on timescales of order ϵ−1. When the solutions
of the full or averaged asymptotically stable critical point attract system, the domain
of approximation might be extendable to all times;
cf [Sanders, Verhulst & Murdock, 2010, Chap 5].
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For instance:

Lemma (Eckhaus/Sanchez-Palencia [Sanders, Verhulst & Murdock, 2010,
p 101, Thm 5.5.1])

Consider the initial value problem

ẋ = ϵ f1(x, t), x(0) = a,

with a, x ∈ D ⊂ Rn and f1 T-periodic in t. Suppose f1 is a KBM-vector field
(Definition 3.2) producing the averaged equation

ż = ϵ f
1
(z), z(0) = a,

where z = 0 is an asymptotically stable critical point in the linear approximation, f
1 is

continuously differentiable for z in D and has a domain of attraction Do ⊂ D. Then for any
compact K ⊂ Do and all a ∈ K

x(t)− z(t) = O(ϵ), 0 ≤ t < ∞.
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The Van der Pol equation

Given the class of Van der Pol equations

ϕ̈ + ϕ = ϵ g(ϕ, ϕ̇) (35)

with g sufficiently smooth. (35) describes a harmonic oscillator with generally
nonlinear feedback and damping. An amplitude-phase (variation of constants)
transformation yields a system in standard form (33)

ϕ = r sin(t − φ)
ϕ̇ = r cos(t − φ)

=⇒
[

ṙ
φ̇

]
= ϵ

[
cos(t − φ) g(ϕ, ϕ̇)

1
r sin(t − φ) g(ϕ, ϕ̇)

]
(36)

where the arguments of g are understood to be substituted by the transformation.
Consequently, the averaged system (34) is given by[

ṙ
φ̇

]
= ϵ f

1
(r) = ϵ

[
f 1

r (r)
f 1

φ(r)

]
(37)

with f 1
r (r) =

1
2π

∫ 2π
0 cos(s − φ) g

(
r sin(s − φ), r cos(s − φ)

)
ds. Furthermore, f 1

φ(r)

defined analogously. Note that f
1

is independent of φ.
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Specialising now to the specific Van der Pol equation with g(ϕ, ϕ̇) = (1 − ϕ2)ϕ̇ as an
illustrative example we obtain the averaged system[

ṙ
φ̇

]
=

[ 1
2 ϵr(1 − 1

4 r2)
0

]
. (38)

By Lemma 1 we know that the error between [r, φ]T and [r, φ]T will be of order ϵ on

timescales of order ϵ−1. Since f
1

is independent of φ we restrict to the decoupled
equation ṙ, which has the two equilibrium points r = 0 and r = 2. The equilibrium
point r = 2 is stable, and we can apply Lemma 2 to extend the validity of the O(ϵ)
error estimate to all times into the future. (Similarly, by defining a negative time
variable, we could apply the theorem to the past attraction to the unstable critical
point at the origin.)
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LRS Bianchi III Einstein-Klein-Gordon system

An LRS Bianchi III metric can be written in the form
[Fajman, Heißel & Maliborski, 2020]

g = −dt2 + a(t)2 dr2 + b(t)2 gH2 (39)

where gH2 = dϑ2 + sinh2(ϑ)dζ2 denotes the 2-metric of negative constant curvature
on hyperbolic 2-space.
The resulting dynamical systems formulation of the Einstein equations for the
metric (39) and an energy-momentum tensor of the form [Ta

b] = diag(−ρ, p, p, p). For
a Klein-Gordon field of mass 1 and the metric (39) we have

ρ =
1
2
(
ϕ̇2 + ϕ2) and p =

1
2
(
ϕ̇2 − ϕ2) (40)

where the field ϕ is subject to the Klein-Gordon equation □gϕ = ϕ. Note that the
Einstein equations force ϕ to be independent of the spatial coordinates due to spatial
homogeneity. Some of the equations are decoupled.
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For this presentation, it suffices to restrict to the reduced coupled part of the LRS
Bianchi III Einstein-Klein-Gordon system, which is given by
[Fajman, Heißel & Maliborski, 2020]

Ḣ = H2[−(1 + q)] (41)

Σ̇+ = H[−(2 − q)Σ+ + 1 − Σ2
+ − Ω] (42)

ϕ̈ + ϕ = H[−3ϕ̇], (43)

with the deceleration parameter

q = 2Σ2
+ +

1
6H2

(
2ϕ̇2 − ϕ2). (44)

H := ( ȧ
a + 2 ḃ

b )/3 denotes the Hubble scalar, i.e., a measure of the overall isotropic rate
of spatial expansion. The corresponding evolution equation (41) is also referred to as
the Raychaudhuri equation.
HΣ+ := ( ȧ

a −
ḃ
b )/3 denotes the only independent component of the shear tensor, i.e., a

measure of anisotropy in the rate of spatial expansion.
Finally, Ω := ρ/(3H2) defines a re-scaled energy density which is non-negative by
definition. Since we are interested in non-vacuum solutions, we consider Ω to be
positive.
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The variables are subject to the Hamiltonian constraint

1 − Σ2
+ − Ω > 0. (45)

Consequently, Σ+ and Ω are bounded and take values in the range (−1, 1) and (0, 1)
respectively. The Klein-Gordon field ϕ is unbounded, and so is H a priori. However,
one will restrict the interest to the case of an (initially) expanding universe, i.e. to
H > 0.

The Klein-Gordon equation (43) has the form of a Van der Pol equation (35) with
g(ϕ, ϕ̇) = −3ϕ̇ and where H(t) plays the role of ϵ. The system (41)–(43) therefore
describes a harmonic oscillator with nonlinear damping, where the time dependence
of the latter is governed by the coupling of the Einstein equations with the
Klein-Gordon equation via H.
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The system in quasi-standard form

Following Subsection 1 an amplitude-phase transformation (36) to formulate the
Klein-Gordon equation (43) as two first order equations is applied. Furthermore, a
transform is used,

r 7→ Ω = r2/(6H2) =⇒ q = 2Σ2
+ + Ω

(
3 cos2(t − φ)− 1

)
. (46)

The result is the system (41), (42) together with the first order Klein-Gordon equations

Ω̇ = H
[
2Ω
(
1 + q − 3 cos2(t − φ)

)]
(47)

φ̇ = H[−3 sin(t − φ) cos(t − φ)]. (48)

Moreover, where now q is understood to be expressed by (46). Setting x = [Σ+, Ω, φ]T

this system has the form[
Ḣ
ẋ

]
= H F1(x, t) + H2 F[2](x, t) = H

[
0

f1(x, t)

]
+ H2

[
f [2](x, t)

0

]
(49)

where f1(x, t) is given by the square brackets in (42), (47) and (48), and f [2](x, t) by the
square bracket in (41). Note that f1, f [2] are independent of H. One can see that (49)
resembles the standard form (33) with H(t) playing the role of the perturbation
parameter ϵ.
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Because (49) has only quasi-standard form and not standard form; one cannot directly
apply lemmas 1 or 2 to obtain rigorous error estimates. However, the following
conjecture is formulated.

Conjecture

Consider some arbitrary non-vacuum (Ω > 0) initial value satisfying the Hamiltonian
constraint (45) and H > 0. Let [H(t), x(t)]T denote the respective solution to (49) and let z(t)
denote the solution to the corresponding averaged equation ż = H(t) f

1
(z), with f

1 as in (34).
Let X(t), Z(t) denote the 2-vectors containing the Σ+ and Ω components of the corresponding
3-vectors x(t), z(t). Then there exists a t∗ such that

X(t)− Z(t) = O
(
H(t)

)
∀ t > t∗. (50)

Under the premise that it holds, one then derives the future asymptotic of Bianchi III
Einstein-Klein-Gordon cosmologies.
In [Fajman, Heißel & Jang, 2021] the long-term behaviour of solutions of a general
class of systems in the standard form (49) was studied; where H > 0 is strictly
decreasing in t and limt→∞ H(t) = 0.
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Let the norm ∥ · ∥ denotes the standard discrete ℓ1- norm ∥u∥ := ∑n
i |ui| for u ∈ Rn.

Let also L∞
x,t denotes the standard L∞ space in both t and x variables with norm

defined as ∥f∥L∞
x,t

:= supx,t |f(x, t)|.

Theorem (Theorem 3.1 of [Fajman, Heißel & Jang, 2021])

Suppose H(t) > 0 is strictly decreasing in t and limt→∞ H(t) = 0. Fix any ϵ > 0 with
ϵ < H(0) and define t∗ > 0 such that ϵ = H(t∗). Suppose that ∥f1∥L∞

x,t
, ∥f [2]∥L∞

x,t
< ∞

and that f1(x, t) is Lipschitz continuous and f [2] is continuous with respect to x for all
t ≥ t∗. Also, assume that f1 and f [2] are T-periodic for some T > 0. Then for all t > t∗
with t = t∗ +O

(
H(t∗)−δ

)
for any given δ ∈ (0, 1) we have

x(t)− z(t) = O
(

H(t∗)min{1,2−2δ}
)

,

where x is the solution of system (49) with initial condition x(0) = x0 and z(t) is the
solution of the time-averaged system ż = H(t∗)f̄1(z), for t > t∗, with initial
condition z(t∗) = x(t∗) where the time-averaged vector f̄1 is defined as

f̄1(z) =
1
T

∫ t∗+T

t∗
f1(z, s)ds.
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Generalised harmonic potentials

We study a scalar-filed cosmology with potential

V(ϕ) = µ2ϕ2 + f 2
(

ω2 − 2µ2
)

︸ ︷︷ ︸
bµ3+2f µ2−f ω2=0, ω2−2µ2>0

(
1 − cos

(
ϕ

f

))
. (51)

1 V is a real-valued smooth function V ∈ C∞(R) with limϕ→±∞ V(ϕ) = +∞.
2 V is an even function V(ϕ) = V(−ϕ).
3 V(ϕ) has always a local minimum at ϕ = 0; V(0) = 0, V′(0) = 0, V′′(0) = ω2 > 0.
4 There is a finite number of values ϕc ̸= 0 satisfying

2µ2ϕc + f
(
ω2 − 2µ2) sin

(
ϕc
f

)
= 0 which are local maximums or local minimums

depending on whether V′′(ϕc) < 0 or V′′(ϕc) > 0. For |ϕc| > f (ω2−2µ2)
2µ2 = ϕ∗ this

set is empty.
5 There exist Vmax = maxϕ∈[−ϕ∗ ,ϕ∗ ] V(ϕ) and Vmin = minϕ∈[−ϕ∗ ,ϕ∗ ] V(ϕ) = 0.
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The asymptotic features of potential (51) are the following. Near global minimum

ϕ = 0, we have V(ϕ) ∼ ω2ϕ2

2 +O
(
ϕ3), as ϕ → 0. That is, ω2 can be related to the

mass of the scalar field near its global minimum. As ϕ → ±∞ cosine-correction is
bounded, then, V(ϕ) ∼ µ2ϕ2 +O (1), as ϕ → ±∞. That makes it suitable to describe
oscillatory behaviour in cosmology.
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Figure: Generalised harmonic potentials. Comparison with ϕ-squared potentials.
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Here we study systems which are not in the standard form (49) but can be expressed
as a series with the centre in H = 0 according to the equation(

Ḣ
ẋ

)
=

(
0

f0(x, t)

)
+ H

(
0

f1(x, t)

)
+ H2

(
f [2](x, t)

0

)
+O(H3), (52)

depending on a parameter ω which is a free frequency that can be tuned to make
f0(x, t) = 0. Therefore, systems can be expressed in the standard form (49).
We define the time averaging

f̄(·) :=
1
L

∫ L

0
f(·, t)dt, L =

2π

ω
. (53)
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Averaging generalized scalar-field cosmologies with matter

LRS Bianchi III

Defining x = (Ω, Σ, Ωk, Φ)T, the system can be symbolically written as a Taylor series
of the form (52). Notice that the term

f0(t, x) =


Ω(f ω2−µ2(bµ+2f )) sin(2tω−2Φ)

2f ω

0
(−bµ3−2f µ2+f ω2) sin2(tω−Φ)

f ω

0

 (54)

in expression (52) is eliminated imposing the condition bµ3 + 2f µ2 − f ω2 = 0, which
defines an angular frequency ω ∈ R. Then, order zero terms in the series expansion

around H = 0 are eliminated assuming ω2 > 2µ2 and setting f = bµ3

ω2−2µ2 , which is
equivalent to tune ω.
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Hence, we obtain:

ẋ = Hf(t, x) +O(H2), (55)

Ḣ = −3
2

H2
(

γ(1 − Σ2 − Ωk − Ω2) + 2Σ2 +
2
3

Ωk + 2Ω2 cos2(tω − Φ)
)
+O(H3), (56)

where

f(t, x) =



1
2 Ω
(
− 3(γ − 2)Σ2 + (2 − 3γ)Ωk + 3

(
Ω2 − 1

)
(−γ + 2 cos2(tω − Φ))

)
1
2

(
Ωk((2 − 3γ)Σ + 2) + 3Σ

(
− (γ − 2)Σ2 + γ + Ω2(−γ + 2 cos2(tω − Φ))− 2

))
Ωk

(
− 3γ

(
Σ2 + Ω2 + Ωk − 1

)
+ 6Σ2 − 2Σ + 6Ω2 cos2(tω − Φ) + 2Ωk − 2

)
− 3

2 sin(2tω − 2Φ)


.

(57)
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Replacing ẋ = Hf(t, x) where f(t, x) is defined by (57) with ẏ = Hf̄(y),
y =

(
Ω, Σ, Ωk, Φ

)T and f̄(y) given by time-averaging (53) we obtain:

Ω̇ =
1
2

HΩ
(
− 3γ

(
Σ2

+ Ω2
+ Ωk − 1

)
+ 6Σ2

+ 3Ω2
+ 2Ωk − 3

)
, (58)

Σ̇ =
1
2

H

(
Σ
(
− 3γ

(
Σ2

+ Ω2
+ Ωk − 1

)
+ 6Σ2

+ 3Ω2
+ 2Ωk − 6

)
+ 2Ωk

)
, (59)

Ω̇k = −HΩk

(
3γ
(

Σ2
+ Ω2

+ Ωk − 1
)
− 6Σ2

+ 2Σ − 3Ω2 − 2Ωk + 2
)

, (60)

Φ̇ = 0, (61)

Ḣ = −1
2

H2
(

3γ
(

1 − Σ2 − Ω2 − Ωk

)
+ 6Σ2

+ 3Ω2
+ 2Ωk

)
. (62)
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Let us define the transformation

x0 := (Ω0, Σ0, Ωk0, Φ0)
T 7→ x := (Ω, Σ, Ω, Φ)T

x = ψ(x0) := x0 + Hg(H, x0, t), g(H, x0, t) =


g1(H, Ω0, Σ0, Ωk0, Φ0, t)
g2(H, Ω0, Σ0, Ωk0, Φ0, t)
g3(H, Ω0, Σ0, Ωk0, Φ0, t)
g4(H, Ω0, Σ0, Ωk0, Φ0, t)

 . (63)

Theorem

Let Ω, Σ, Ωk, Φ and H be defined functions that satisfy averaged equations (58), (59),
(60), (61), (62). Then, there exist continuously differentiable functions g1, g2, g3 and g4,
such that Ω, Σ, Ωk and Φ are locally given by (63), where Ω0, Σ0, Ωk0, Φ0 are order
zero approximations of them as H → 0. Then, functions Ω0, Σ0, Ωk0, Φ0 and averaged
solution Ω, Σ, Ωk, Φ have the same limit as t → ∞. Setting Σ = Σ0 = 0 we have similar
results for the negatively curved FLRW model.

Theorem 2 applies to Bianchi III, and the invariant set Σ = 0 corresponds to
negatively curved FLRW models.
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Open FLRW model

ẋ = Hf(t, x) +O(H2), x = (Ω, Ωk, Φ)T , (64)

Ḣ = −H2

[
1
2

(
3γ
(

1 − Ω2 − Ωk

)
+ 2Ωk

)
+ 3Ω2 cos2(tω − Φ)

]
+O(H3), (65)

f (t, x) =

 1
2 Ω
(
3γ − 3γ

(
Ω2 + Ωk

)
+ 2Ωk

)
+ 3Ω

(
Ω2 − 1

)
cos2(tω − Φ)

−Ωk
(
3γΩ2 + (3γ − 2)(Ωk − 1)

)
+ 6Ω2Ωk cos2(tω − Φ)

− 3
2 sin(2tω − 2Φ)

 . (66)

Replacing ẋ = Hf(t, x) with f(t, x) defined by (66) with ẏ = Hf (y), y =
(
Ω, Ωk, Φ

)T

and using the time averaging (53) we obtain the time-averaged system:

Ω̇ = − 1
2

H Ω
(

3(γ − 1)
(

Ω
2 − 1

)
+ (3γ − 2)Ωk

)
, (67)

Ω̇k = −H Ωk

(
3(γ − 1)Ω

2 − 3γ + (3γ − 2)Ωk + 2
)

, (68)

Φ̇ = 0. (69)
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Point a(t) b(t) Solution

T (3H0t+1)
c2

√
c2 Taub-Kasner solution (p1 = 1, p2 = 0, p3 = 0)

Q c−2
1 (3H0t + 1)−1/3 c−1

1 (3H0t + 1)2/3 non-flat LRS Kasner (p1 = −1/3, p2 = 2/3, p3 = 2/3) Bianchi I solution

D c−1
1

(3H0t+2)
2
√

c1
Bianchi III form of flat spacetime

F c−1
1 t2/3 c−1/2

2 t2/3 Einstein-de-Sitter solution

F0 ℓ0

(
3γH0t

2 + 1
) 2

3γ
ℓ0

(
3γH0t

2 + 1
) 2

3γ Matter dominated FLRW universe

MC ℓ0

(
3γH0t

2 + 1
) 2

3γ
ℓ0

(
3γH0t

2 + 1
) 2

3γ Matter-curvature scaling solution

Point a(t) Solution

F a0

(
3H0 t

2 + 1
) 2

3 Einstein-de-Sitter solution

F0 a0

(
3γH0 t

2 + 1
) 2

3γ Matter dominated FLRW universe

C a0 (H0t + 1) Milne solution
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Late-time behaviour: LRS Bianchi III

The results from the linear stability analysis, the Centre Manifold calculations, and
combined with Theorem 2 lead to:

Theorem

The late time attractors of the full system and averaged system for Bianchi III line
element are:

(i) The matter dominated FLRW universe F0 with line element

ds2 = −dt2 + ℓ2
0

(
3γH0t

2
+ 1
) 4

3γ (
dr2 + gH2

)
, (70)

provided 0 < γ ≤ 2/3. F0 represents a quintessence fluid for 0 < γ < 2/3 or a
zero-acceleration model for γ = 2/3. In the limit γ = 0, we have a de Sitter
solution.

(ii) The matter-curvature scaling solution MC with Ωm = 3(1 − γ) and line element
(70) if 2/3 < γ < 1.

(iii) The Bianchi III flat spacetime D with metric

ds2 = −dt2 + c−2
1 dr2 +

(3H0t + 2)2

4c1
gH2 , (71)

provided 1 ≤ γ ≤ 2.
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Late-time behaviour: open FLRW

The results from the linear stability analysis combined with Theorem 2 (for Σ = 0)
lead to:

Theorem

The late time attractors of the full system and the averaged system are:
(i) The matter dominated FLRW universe F0 with line element

ds2 = −dt2 + a2
0

(
3γH0t

2
+ 1
) 4

3γ (
dr2 + sinh2(r)dΩ2

)
, (72)

where dΩ2 = dϑ2 + sin2 ϑ dζ2 is the metric for a two-sphere, provided
0 < γ ≤ 2/3. F0 represents a quintessence fluid or a zero-acceleration model for
γ = 2/3. In the limit γ = 0, we have a de Sitter solution.

(ii) The Milne solution C with Ωk = 1, k = −1 with line element

ds2 = −dt2 + a2
0 (H0t + 1)2

(
dr2 + sinh2(r)dΩ2

)
, (73)

for 2/3 < γ < 2.
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(a) Projections in the space (Σ, H, Ω2) for the LRS Bianchi III metric when γ = 1.
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(b) Projections in the space (Ωk , H, Ω2) for the LRS Bianchi III metric when γ = 1.
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(c) Projections in the space (Ωk , H, Ω2) for FLRW metric with negative curvature
(k = −1).
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Results

In LRS Bianchi III, late time attractors of full and averaged system are:
(i) The matter dominated FLRW universe F0 with line element (70) if 0 < γ ≤ 2/3. F0

represents a quintessence fluid or a zero-acceleration model for γ = 2/3. In the limit
γ = 0, we have the de Sitter solution.

(ii) The matter-curvature scaling solution CS with Ω̄m = 3(1 − γ) if 2/3 < γ < 1.
(iii) The Bianchi III flat spacetime D with line element (71) if 1 < γ ≤ 2.
For FLRW metric with k = −1, late time attractors of full and averaged systems
are:

(i) The matter dominated FLRW universe F0 with line element (72) for 0 < γ ≤ 2/3. F0
represents a quintessence fluid or a zero-acceleration model for γ = 2/3. In the limit
γ = 0, we have the de Sitter solution.

(ii) The Milne solution C with line element (73) for 2/3 < γ < 2.

In summarising, in LRS Bianchi III, late-time attractors are a matter-dominated
flat FLRW universe, a matter-curvature scaling solution, or a Bianchi III flat
spacetime. FLRW metrics with k = −1 late time attractors are the
matter-dominated FLRW universe or a Milne solution. The matter-dominated flat
FLRW universe represents quintessence fluid if 0 < γ < 2/3.
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MUCHAS GRACIAS
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PART 3

1 Generalisation to 2-scalar-field theory
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Generalisation to 2-scalar-field theory

Now we study two canonical scalar fields ϕ1, ϕ2 interacting via the potential

V (ϕ1, ϕ2) = µ4
1

[
1 − cos

(
ϕ1
f1

)]
+ µ4

2

[
1 − cos

(
ϕ2
f2

)]
+ µ4

3

[
1 − cos

(
ϕ1
f1

− n
ϕ2
f2

)]
.

(74)

The complete action is given by S = Sg(gµν) + Sϕ(ϕ1, ϕ2) + Sm, where Sg is the
Einstein Hilbert action, Sm is the action corresponding to the non-interacting
barotropic CDM and the interacting DM-DE part of the action is given by,

Sϕ(ϕ1, ϕ2) = −
∫

d4x
√
−g
(1

2
(∂ϕ1)

2 +
1
2
(∂ϕ2)

2 + V(ϕ1, ϕ2)
)

. (75)

We get the total energy-momentum tensor consisting of the non-interacting part of
the CDM and the two fields ϕ1, ϕ2 from the variation of Sm + Sϕ(ϕ1, ϕ2) for the

metric, that is, Tµν = − 2√−g
δ(Sm+Sϕ)

δgµν .
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Friedmann constraint equation is given by:

3H2 = ρ +
1
2

ϕ̇1
2 +

1
2

ϕ̇2
2 + 2µ4

1 sin2
(

ϕ1
2f1

)
+ 2µ4

2 sin2
(

ϕ2
2f2

)
+ 2µ4

3 sin2
(

ϕ1
2f1

− n
ϕ2
2f2

)
.

(76)

Raychaudhuri equation is given by:

2Ḣ = −ρ − ϕ̇1
2 − ϕ̇2

2 . (77)

KG equations are given by:

ϕ̈1 + 3Hϕ̇1 +
µ4

1
f1

sin
(

ϕ1
f1

)
+

µ4
3

f1
sin
(

ϕ1
f1

− n
ϕ2
f2

)
= 0, (78a)

ϕ̈2 + 3Hϕ̇2 +
µ4

2
f2

sin
(

ϕ2
f2

)
− n

µ4
3

f2
sin
(

ϕ1
f1

− n
ϕ2
f2

)
= 0. (78b)

The continuity equation is given by:

ρ̇ + 3Hρ = 0 . (79)
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We integrate the equations (76), (77), (78) using the redshift z instead of the cosmic
time t as the independent variable. We have the differential operators:

df
dt

= −H0E(1 + z)
df
dz

,
d2f
dt2 = H2

0E2
[
(1 + z)2 d2f

dz2 + (1 + z)(q + 2)
df
dz

]
, (80)

d2f
dt2 + 3H

df
dt

= H2
0E2

[
(1 + z)2 d2f

dz2 + (1 + z)(q − 1)
df
dz

]
, (81)

q = −1 + (1 + z)
d ln H

dz
=

1
2

[
1 +

(1 + z)2

2

((
dϕ1

dz

)2

+

(
dϕ2

dz

)2
)
− V(ϕ1, ϕ2)

E2H2
0

]
. (82)

Hence, EQs. (78a)- (78b) becomes

E2
[
(1 + z)2 d2ϕ1

dz2 + (1 + z)(q − 1)
dϕ1

dz

]
+

µ4
1

H2
0 f1

sin
(

ϕ1

f1

)
+

µ4
3

H2
0 f1

sin
(

ϕ1

f1
− n

ϕ2

f2

)
= 0, (83a)

E2
[
(1 + z)2 d2ϕ1

dz2 + (1 + z)(q − 1)
dϕ1

dz

]
+

µ4
2

H2
0 f2

sin
(

ϕ2

f2

)
− n

µ4
3

f2
sin

(
ϕ1

f1
− n

ϕ2

H2
0 f2

)
= 0. (83b)

Raychaudhuri equation becomes

(1 + z)
dE
dz

= (q + 1)E. (83c)
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Then, we obtain a system of differential equations for ϕ1(z), ϕ2(z), and E(z) given by
(83a), (83b) and (83c) and integrate in terms of redshift z, from z = 100 to z = −1. The
parameter values f1 = 0.1, f2 = 0.1, µ4

1 = 1.1H2
0 , µ4

2 = 10.75H2
0 , µ4

3 = 1.07 and n = 9 are
chosen. As initial conditions for the fields we use ϕ1|z=100 = 0.155, ϕ2|z=100 = 0.7835,
dϕ1
dz |z=100 = 0 and dϕ2

dz |z=100 = 0, such that V(ϕ1(z), ϕ2(z))|z=100 = 11.6351H2
0 . As an

initial condition for the Hubble parameter when z = 100, we take as an “educated
guess” the value obtained for the ΛCDM model at z = 100. That is, we use the
expression

E(z) =
√

Ωr0(1 + z)4 + Ωm0(1 + z)3 + ΩΛ0, (84)

where Ωr0 = 2.469 × 10−5h−2(1 + 0.2271Neff) and ΩΛ0 = 1 − Ωr0 − Ωm0. For these
parameters we consider H0 = 67.4 km s−1 Mpc−1, Ωm0 = 0.315 and Neff = 2.99
according to the Planck 2018 results [N. Aghanim, et al., Planck 2018].
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For the analysis we define Ωϕ = ρϕ/3H2 and ωϕ = pϕ/ρϕ, where

ρϕ =
1
2

ϕ̇1
2
+

1
2

ϕ̇2
2
+ V(ϕ1, ϕ2), pϕ =

1
2

ϕ̇1
2
+

1
2

ϕ̇2
2 − V(ϕ1, ϕ2), (85)

with V(ϕ1, ϕ2) given by equation (74), and from equation (76) we obtain the constraint
Ω = 1 − Ωϕ, where Ω = ρ/3H2. We define

ωΛ = −1, r = Ωm/ΩΛ. (86)

We define the kinetic and potential terms of Ωϕ as

K1 :=
ϕ̇1

2

6H2 =
1
6
(1 + z)2

(
dϕ1

dz

)2

, (87a)

K2 :=
ϕ̇2

2

6H2 =
1
6
(1 + z)2

(
dϕ2

dz

)2

, (87b)

W :=
V(ϕ1, ϕ2)

3H2 =
V(ϕ1, ϕ2)

3H2
0E2

, (87c)

Wint :=
µ4

3

3H2
0E2

[
1 − cos

(
ϕ1

f1
− n

ϕ2

f2

)]
. (87d)
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(d) Evolution of the axion-like fields density parameter Ωϕ and the matter
density parameter Ω of our model and the density parameters Ωm, ΩΛ
and Ωr of ΛCDM as a function of the redshift z.
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(e) Evolution of the effective barotropic index ωϕ associated to the axion-
like fields as a function of the redshift z and ωΛ = −1 corresponding to
ΛCDM.
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(f) Evolution of the kinetic, potential and interaction terms of Ωϕ given by
(87) as functions of redshift z.
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(g) Zoom of kinetic terms (87a) and (87b) as functions of redshift z.
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(h) Evolution of the ratios Ω/Ωϕ and Ω/ΩΛ as a function of the redshift
z. According Planck 2018 results [N. Aghanim, et al., Planck 2018], the cur-
rent value of r is Ωm0/ΩΛ0 = 63/137.
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(i) Evolution of the dimensionless Hubble parameter E = H/H0 for our
model and for ΛCDM as a function of the redshift z.
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(j) Evolution of the deceleration parameter defined by q := −1− Ḣ/H2 for
our model and for ΛCDM as a function of the redshift z.
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(k) Evolution of the axion-like fields ϕ1 and ϕ2 as a function of the redshift
z.

Figure: Numerical simulation of the system (77)-(78) with initial conditions ϕ1|z=100 = 0.155,
ϕ2|z=100 = 0.7835, dϕ1

dz z=100 = 0 and dϕ2
dz z=100 = 0. The initial value H|z=100 is estimated from

expression (84). The exact solutions for the ΛCDM model are superimposed for comparison.
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(a) Surface V(ϕ1, ϕ2)/(3H2
0).
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(b) Surface V(ϕ1, ϕ2)/(3H2
0) (basin of attraction of ϕ∗).

Figure: Surface V(ϕ1, ϕ2)/(3H2
0) with the local minimum of V(ϕ1, ϕ2)/(3H2

0) at
ϕ∗ := (ϕ1, ϕ2) = (0.0614165, 0.572375) with minimum value of Λeff

3H2
0
= 0.682603 (denoted by a red

star). The parametric curve (denoted by a blue line) V(ϕ1(z),ϕ2(z))
3H2

0
, z ∈ [−1, 100], obtained by

evaluating the solution which converges to ϕ∗, is attached to the surface.
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Averaging

Let us assume n ̸= 0. Defining the new fields

Ψ1 =

√
c2

1 + c2

(
ϕ2 −

ϕ1

c

)
, Ψ2 =

√
1

1 + c2 (cϕ1 + ϕ2) , (88)

the field equations become

Ψ̈1 + 3HΨ̇1 = f1(Ψ1, Ψ2; ai, bj, c, n, H2
0), (89a)

Ψ̈2 + 3HΨ̇2 = f2(Ψ1, Ψ2; ai, bj, c, n, H2
0), (89b)

3H2 − U(Ψ1, Ψ2; ai, bj, c, n, H2
0)− ρ − 1

2
Ψ̇1

2 − 1
2

Ψ̇2
2
= 0. (89c)
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Imposing the conditions

c =
3a1

(
b2 + 2b3n2

)
− 6a2(b1 + b3) +

√(
6a2(b1 + b3)− 3a1

(
b2 + 2b3n2

))2
+ 144a1a2b2

3n2

12√a1
√a2b3n

, (90a)

ω1
H0

=

√
a1
(

b2 + 2b3n2
)
+ 2a2(b1 + b3) +

√
4a2

1b2
3n4 + 4a1b3n2(a1b2 − 2a2b1 + 2a2b3) + (a1b2 − 2a2(b1 + b3))

2

2√a1
√a2

, (90b)

ω2
H0

=

√
a1
(

b2 + 2b3n2
)
+ 2a2(b1 + b3)−

√
4a2

1b2
3n4 + 4a1b3n2(a1b2 − 2a2b1 + 2a2b3) + (a1b2 − 2a2(b1 + b3))

2

2√a1
√a2

, (90c)

we obtain the decoupled oscillators

Ψ̈1 + 3HΨ̇1 + ω2
1Ψ1 = 0, Ψ̈2 + 3HΨ̇2 + ω2

2Ψ2 = 0 (91)

in the limit Ψi → 0. Therefore, as H → 0, we obtain the decoupled oscillators

Ψ̈1 + ω2
1Ψ1 = 0, Ψ̈2 + ω2

2Ψ2 = 0. (92)

The solutions of (92) can be written as

Ψi(t) = ri sin (tωi − Φi) , Ψ̇1(t) = riωi cos (tωi − Φi) , i = 1, 2, (93)

where ri and Φi are integration constants.
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Variation of constants

According to the Raychaudhuri equation (77), H is a monotonic decreasing function.
Additionally, as the minimum of V(ϕ1, ϕ2) in (ϕ1, ϕ2) = (0, 0) is approached, H → 0.
Therefore, as H → 0, we obtain the decoupled oscillators (92). Motivated by the
solution (93), we use the variation of constants to propose the solution of the full KG
system as

Ψi(t) = ri(t) sin (tωi − Φi(t)) , Ψ̇i = ri(t)ωi cos (tωi − Φi(t)) , i = 1, 2, (94a)

with inverse functions

ri =

√
Ψ2

i +

(
Ψ̇i
ωi

)2

, Φi = tωi − tan−1
(

ωiΨi
Ψ̇i

)
, i = 1, 2, (95)

where c and ω1, ω2 are undetermined constants. Let us define

Ωi =
r2
i ωi

6H2 , Ω =
ρ

3H2 . (96)
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By expanding in Taylor’s series around H = 0, we have the 6- dimensional system

ẋ = HF[1](t, x) +O
(

H2
)

, x(0) = x0, t ≥ 0, (97a)

Ḣ = −G[2](t, x)H2, (97b)

where

x = (Ω1, Ω2, Ω, Φ1, Φ2)
T , (98)

G[2](t, x) = 3Ω1 cos2(Φ1 − tω1) + 3Ω2 cos2(Φ2 − tω2) +
3Ω
2

, (99)

and

F[1](t, x) =



3Ω1
(
2(Ω1 − 1) cos2(tω1 − Φ1) + 2Ω2 cos2(tω2 − Φ2) + Ω

)
3Ω2

(
2Ω1 cos2(tω1 − Φ1) + 2(Ω2 − 1) cos2(tω2 − Φ2) + Ω

)
3Ω(Ω + Ω1 + Ω2 + Ω1 cos(2(tω1 − Φ1)) + Ω2 cos(2(tω2 − Φ2))− 1)

− 3
2 sin(2(tω1 − Φ1))

− 3
2 sin(2(tω2 − Φ2))


.

(100)
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time averaging

If we have vector functions fn(t, x) which have N independent periods
Tn, n = 1, . . . , N, Take the averaging

ẏ = εf (0)(y), y(0) = x0, f (0)(y) =
N

∑
n=1

1
Tn

∫ Tn

0
fn(t, y)dt, (101)

where y is considered a parameter kept constant during integration.
Assuming ω1 ̸= ω2, with H playing the role of ε, N = 2, T1 = 2π

ω1
and T2 = 2π

ω2
we can

use the following averaging procedure:

f (0)(y) =
ω1

2π

∫ 2π
ω1

0
f1(t, y)dt +

ω2

2π

∫ 2π
ω2

0
f2(t, y)dt (102)

where the vector field f (t, y) in the right-hand-side of the equation must be the sum
of two vector functions f1(t, y) and f2(t, y) where each of them is periodic with one
period. The averaged system obtained using such an approach is

∂tΩ1
∂tΩ2
∂tΩ
∂tΦ1
∂tΦ2

 = −3H


Ω1
(
1 − Ω1 − Ω2 − Ω

)
Ω2
(
1 − Ω1 − Ω2 − Ω

)
Ω
(
1 − Ω1 − Ω2 − Ω

)
0
0

 , (103a)

Ḣ = − 3
2

H2 (Ω1 + Ω2 + Ω
)

. (103b)
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We implement a local nonlinear transformation:

x0 := (Ω10, Ω20, Ω0, Φ10, Φ20)
T 7→ x := (Ω1, Ω2, Ω, Φ1, Φ2)

T

x = ψ(x0) := x0 + Hg(H, x0, t), g(H, x0, t) =


g1(H, Ω10, Ω20, Ω0, Φ10, Φ20, t)
g2(H, Ω10, Ω20, Ω0, Φ10, Φ20, t)
g3(H, Ω10, Ω20, Ω0, Φ10, Φ20, t)
g4(H, Ω10, Ω20, Ω0, Φ10, Φ20, t)
g5(H, Ω10, Ω20, Ω0, Φ10, Φ20, t)

 . (104)

Theorem

Let Ω1, Ω2, Ω, Φ1, Φ2. Furthermore, H be defined functions that satisfy averaged
equations (103). Then, there exist continuously differentiable functions g1, g2, g3, g4
and g5, such that Ω1, Ω2, Ω, Φ1, Φ2 are locally given by (104), where
Ω10, Ω20, Ω0, Φ10, Φ20 are order zero approximations of them as H → 0. Then,
functions Ω10, Ω20, Ω0, Φ10, Φ20 and averaged solution Ω1, Ω2, Ω, Φ1, Φ2 have the
same limit as t → ∞.

Theorem 5 implies that Ωi, Ω, Φi, i = 1, 2 evolves according to the averaged equations
(103) as H → 0.
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1 The perturbed system truncated at second order in H:

dH
dτ = −H

[
3Ω1 cos2(tω1 − Φ1) + 3Ω2 cos2(tω2 − Φ2) +

3Ω
2

]
, dt

dτ = 1/H,

dΩ1
dτ = 3Ω1

(
2(Ω1 − 1) cos2(tω1 − Φ1) + 2Ω2 cos2(tω2 − Φ2) + Ω

)
,

dΩ2
dτ = 3Ω2

(
2Ω1 cos2(tω1 − Φ1) + 2(Ω2 − 1) cos2(tω2 − Φ2) + Ω

)
,

dΩ
dτ = 3Ω(Ω + Ω1 + Ω2 + Ω1 cos(2(tω1 − Φ1)) + Ω2 cos(2(tω2 − Φ2))− 1),

dΦ1
dτ = − 3

2 sin(2(tω1 − Φ1)),
dΦ2
dτ = − 3

2 sin(2(tω2 − Φ2)).

(105)

2 The averaged system: 

dH
dτ = − 3

2 H
(
Ω1 + Ω2 + Ω

)
, dt

dτ = 1/H,
dΩ1
dτ = −3Ω1

(
1 − Ω1 − Ω2 − Ω

)
,

dΩ2
dτ = −3Ω2

(
1 − Ω1 − Ω2 − Ω

)
,

dΩ
dτ = −3Ω

(
1 − Ω1 − Ω2 − Ω

)
,

dΦ1
dτ = 0, dΦ1

dτ = 0.

(106)
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Table: Five initial data sets for the simulation of the truncated system (105) and time-averaged
system (106). All the conditions are chosen in order to fulfil the inequality Ω1 + Ω2 + Ω ≤ 1.

Sol. H(0) Ω1(0) Ω2(0) Ω(0) Φ1(0) Φ2(0) t(0)
i 0.01 0.255 0.255 0.113 0 0 0
ii 0.1 0.424 0.261 0.315 0 0 0
iii 0.1 0.243 0.342 0.315 0 0 0
iv 0.1 0.105 0.178 0.526 0 0 0
v 0.1 0.005 0.078 0.786 0 0 0
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(b) Projections in the space (Ω, Ωt), where Ωt = Ω1 +
Ω2 + Ω. The plot on the right represents a zoomed region
of the plot on the left.

Figure: Some solutions of the truncated system (105) (blue) and time-averaging system (106)
(orange) for the fixed values of ω1 =

√
2 and ω2 =

√
2/2. We use the five data sets presented in

Table 3 as initial conditions for both systems. These plots are numerical evidence that the main
theorem 5 is fulfilled. That is, the solution of the truncated system follows the track of the
solutions of the time-averaged system and the oscillations experimented by the truncated system
are smoothed out as H → 0.
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Results

1 We have analysed several cosmological models, and we finalised a model
consisting of two canonical scalar fields ϕ1, ϕ2 interacting via the potential. We
have introduced dimensionless dynamical variables and dimensionless time
variables.

2 In the first-order approximations of matter, normalised scalar field densities and
the values of two scalar fields Φ1 and Φ2 (which are functions of ϕ1 and ϕ2) as
H → 0 and their averaged values –with a properly defined averaging process–
have the same limit as H → 0 (as τ → ∞). That was summarised in theorem 5.

3 Therefore, with this approach, oscillations entering the nonlinear system through
the KG equation can be controlled and smoothed out as the Hubble factor H,
acting as a time-dependent perturbation parameter, tends monotonically to zero.

4 We have studied the time-averaged system using standard techniques of
dynamical systems and presented numerical simulations as evidence of such
behaviour.
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Further work

1 This approach is helpful to describe inflaton’s oscillations around the potential
minimum during reheating after inflation. For nonzero H, this gives rise to
time-dependent oscillatory dynamics. That is responsible for particle production
via quantum field theory.

2 The relevant calculations depend on the form of the potential and, in particular,
are pretty complicated for harmonic potentials. The result here shows that one
can “average out” the oscillations arising from the harmonic functions, thus
simplifying the problem. Indeed, by using some inverse transformations, one can
find from the Ωi to Φi, i.e., the averaged version of the original field variables.
We hope this approach may help reheat calculations in the N-inflation model.

3 This approach is also suitable in the linear cosmological perturbations context. In
the cosmological perturbation theory, cosmological perturbations at the linear
level are governed by equations whose coefficients are composed of background
quantities; therefore, proper knowledge of the background dynamics is necessary
for further perturbation analyses.
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